Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8396, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600096

RESUMO

Disease-causing variants have been identified for less than 20% of suspected equine genetic diseases. Whole genome sequencing (WGS) allows rapid identification of rare disease causal variants. However, interpreting the clinical variant consequence is confounded by the number of predicted deleterious variants that healthy individuals carry (predicted genetic burden). Estimation of the predicted genetic burden and baseline frequencies of known deleterious or phenotype associated variants within and across the major horse breeds have not been performed. We used WGS of 605 horses across 48 breeds to identify 32,818,945 variants, demonstrate a high predicted genetic burden (median 730 variants/horse, interquartile range: 613-829), show breed differences in predicted genetic burden across 12 target breeds, and estimate the high frequencies of some previously reported disease variants. This large-scale variant catalog for a major and highly athletic domestic animal species will enhance its ability to serve as a model for human phenotypes and improves our ability to discover the bases for important equine phenotypes.


Assuntos
Cruzamento , Genoma , Cavalos/genética , Animais , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Anim Genet ; 54(6): 752-762, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37697831

RESUMO

Splashed white in horses is characterized by extensive white patterning on the legs, face and abdomen and may be accompanied by deafness. To date, seven variants in microphthalmia-associated transcription factor (MITF) and two variants in Paired Box 3 (PAX3) have been identified to explain this phenotype. A splashed white Thoroughbred stallion, whose sire and dam were not patterned, was hypothesized to have a de novo variant leading to his white coat pattern. A whole-genome sequencing candidate gene approach identified two single nucleotide variants (SNVs) in SOX10, four SNVs in MITF and a 2.3 kb deletion in MITF with the alternative allele present in this stallion but absent in the other 18 horses analyzed. All six SNVs were annotated as modifiers and were not further considered. The deletion in MITF (NC_009159.3:g.21555811_21558139delinsAAAT) encompasses exon 9 encoding a part of the helix-loop-helix domain required for DNA binding. Sanger sequencing and parentage testing confirmed that this deletion was a de novo mutation of maternal origin. Consistent with the published nomenclature, we denote this likely causal variant as SW8. Genotyping three of this stallion's offspring identified SW8 only in the nearly all-white foal that was confirmed deaf by brainstem auditory evoked response testing. This foal was also a compound heterozygote for dominant white variants (W20/W22), but to date, W variants alone have not been connected to deafness. SW8 marks the fourth de novo MITF variant in horses reported to cause white patterning. The link between deafness and all MITF variants with and without other variants impacting melanocyte development and function needs to be further explored.


Assuntos
Surdez , Doenças dos Cavalos , Cavalos/genética , Animais , Masculino , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Fenótipo , Alelos , Éxons , Surdez/genética , Mutação , Doenças dos Cavalos/genética
3.
Anim Genet ; 52(5): 675-682, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34143521

RESUMO

The domestic cat (Felis silvestris catus) is a valued companion animal throughout the world. Over 60 different cat breeds are accepted for competition by the cat fancy registries in different countries. Genetic markers, including short tandem repeats and SNPs, are available to evaluate and manage levels of inbreeding and genetic diversity, population and breed structure relationships, and individual identification for forensic and registration purposes. The International Society of Animal Genetics (ISAG) hosts the Applied Genetics in Companion Animals Workshop, which supports the standardization of genetic marker panels and genotyping for the identification of cats via comparison testing. SNP panels have been in development for many species, including the domestic cat. An ISAG approved core panel of SNPs for use in cat identification and parentage analyses is presented. SNPs (n = 121) were evaluated by different university-based and commercial laboratories using 20 DNA samples as part of the ISAG comparison testing procedures. Different SNP genotyping technologies were examined, including DNA arrays, genotyping-by-sequencing and mass spectroscopy, to select a robust and efficient panel of 101 SNPs as the ISAG core panel for cats. The SNPs are distributed across all chromosomes including two on the X chromosome and an XY pseudo-autosomal sexing marker (zinc-finger XY; ZFXY). A population study demonstrated that the markers have an average polymorphic information content of 0.354 and a power of exclusion greater than 0.9999. The SNP panel should keep testing affordable while also allowing for the development of additional panels to monitor health, phenotypic traits, hybrid cats and highly inbred cats.


Assuntos
Gatos/genética , Marcadores Genéticos , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Genética Populacional , Técnicas de Genotipagem/normas , Análise de Sequência com Séries de Oligonucleotídeos/normas
4.
Res Vet Sci ; 136: 297-302, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33740564

RESUMO

Auditory loss has been reported in camelids using brainstem auditory evoked responses (BAER). Differentiation between conductive versus sensorineural dysfunction has not been investigated. Therefore, the objective of the study was to investigate auditory function using BAER and bone conduction (BC). Twenty-four alpacas: 15 females, 9 intact males (2-16 years of age) were included in a randomized clinical trial. BAER and BC were recorded using two derivations (vertex to mastoid and vertex to cranial aspect of second cervical vertebra). All alpacas underwent complete physical examinations and were sedated with xylazine hydrochloride at 0.6 mg/kg IM. Peaks, when present, were identified and latencies, amplitudes, and amplitude ratios were determined. Eleven alpacas had normal responses and 13 had auditory loss based on BAER. The latter consisted of complete absence of peaks bilaterally (n = 3), absence of peaks unilaterally (n = 1), delayed latencies bilaterally (n = 4), and delayed latencies unilaterally (n = 5). Distinct peaks on BC supported conductive auditory loss in 6 alpacas, difficult to interpret due to stimulus artifact and additional undefined peaks in 4, and absent peaks in 3 alpacas. The cause of auditory loss was presumed to be due to otitis in 6, aging in 4 (10-16 years old), and congenital sensorineural (absent peaks on BAER and BC) in 3 alpacas with unpigmented fiber and irises. BAER and BC are useful and non-invasive to perform techniques for the investigation of auditory loss in alpacas, and further characterization as conductive or sensorineural.


Assuntos
Condução Óssea/fisiologia , Camelídeos Americanos/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Animais , Feminino , Masculino
5.
BMC Genomics ; 21(1): 848, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256610

RESUMO

BACKGROUND: Distichiasis, an ocular disorder in which aberrant cilia (eyelashes) grow from the opening of the Meibomian glands of the eyelid, has been reported in Friesian horses. These misplaced cilia can cause discomfort, chronic keratitis, and corneal ulceration, potentially impacting vision due to corneal fibrosis, or, if secondary infection occurs, may lead to loss of the eye. Friesian horses represent the vast majority of reported cases of equine distichiasis, and as the breed is known to be affected with inherited monogenic disorders, this condition was hypothesized to be a simply inherited Mendelian trait. RESULTS: A genome wide association study (GWAS) was performed using the Axiom 670 k Equine Genotyping array (MNEc670k) utilizing 14 cases and 38 controls phenotyped for distichiasis. An additive single locus mixed linear model (EMMAX) approach identified a 1.83 Mb locus on ECA5 and a 1.34 Mb locus on ECA13 that reached genome-wide significance (pcorrected = 0.016 and 0.032, respectively). Only the locus on ECA13 withstood replication testing (p = 1.6 × 10- 5, cases: n = 5 and controls: n = 37). A 371 kb run of homozygosity (ROH) on ECA13 was found in 13 of the 14 cases, providing evidence for a recessive mode of inheritance. Haplotype analysis (hapQTL) narrowed the region of association on ECA13 to 163 kb. Whole-genome sequencing data from 3 cases and 2 controls identified a 16 kb deletion within the ECA13 associated haplotype (ECA13:g.178714_195130del). Functional annotation data supports a tissue-specific regulatory role of this locus. This deletion was associated with distichiasis, as 18 of the 19 cases were homozygous (p = 4.8 × 10- 13). Genotyping the deletion in 955 horses from 54 different breeds identified the deletion in only 11 non-Friesians, all of which were carriers, suggesting that this could be causal for this Friesian disorder. CONCLUSIONS: This study identified a 16 kb deletion on ECA13 in an intergenic region that was associated with distichiasis in Friesian horses. Further functional analysis in relevant tissues from cases and controls will help to clarify the precise role of this deletion in normal and abnormal eyelash development and investigate the hypothesis of incomplete penetrance.


Assuntos
Doenças Palpebrais/veterinária , Pálpebras/patologia , Estudo de Associação Genômica Ampla , Doenças dos Cavalos/genética , Animais , Doenças Palpebrais/genética , Haplótipos , Cavalos , Fenótipo , Sequenciamento Completo do Genoma
6.
Equine Vet J ; 52(1): 34-40, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30903710

RESUMO

BACKGROUND: Belgian horses are commonly affected with ocular squamous cell carcinoma (SCC), the most common cancer of the equine eye. A missense mutation in damage-specific DNA binding protein 2 (DDB2 c.1013C>T, p.Thr338Met) has been established as a recessive genetic risk factor for ocular SCC in the Haflinger breed. A sample of Belgian horses with unknown SCC phenotype was shown to possess this variant at a similar frequency to the Haflinger breed. Retrospective studies indicate that chestnut coat colour may predispose to the development of SCC. OBJECTIVES: To determine if DDB2 c.1013C>T is a risk factor for ocular SCC in a strictly phenotyped sample of Belgian horses. To investigate associations between coat colour loci genotypes and ocular SCC. STUDY DESIGN: Retrospective and prospective case identification, genetic investigation. METHODS: Genomic DNA was isolated from blood, hair or formalin-fixed paraffin-embedded tissue from 25 Belgian horses with histologically confirmed ocular SCC and 18 unaffected Belgian horses. Association testing of 34 single nucleotide variants from 11 genomic loci and genotyping for DDB2 c.1013C>T and coat colour alleles were performed. Exons of DDB2 were sequenced in four cases and two controls. Associations were analysed by Chi-square or Fisher's exact tests and relative risk was calculated. RESULTS: Homozygosity for DDB2 c.1013C>T was significantly associated with ocular SCC (P = 7.4 × 10-7 ). Seventy-six per cent of affected horses were homozygous for the variant. Relative risk for homozygous horses developing SCC was 4.0 (P = 1.0 × 10-4 ). Sequencing DDB2 did not identify a variant more concordant with disease phenotype. An association between disease and coat colour loci was not identified. MAIN LIMITATIONS: Phenotyping was determined at a single timepoint. Each included horse genotyped as chestnut, so association with this MC1R variant could not be investigated. CONCLUSIONS: A missense variant, DDB2 c.1013C>T, p.Thr338Met, is a risk factor for ocular SCC in Belgian horses. A genetic risk test is commercially available.


Assuntos
Carcinoma de Células Escamosas/veterinária , Proteínas de Ligação a DNA/genética , Neoplasias Oculares/veterinária , Predisposição Genética para Doença , Doenças dos Cavalos/genética , Mutação de Sentido Incorreto , Animais , Cavalos
7.
Anim Genet ; 51(1): 111-116, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31793009

RESUMO

Equine recurrent uveitis (ERU) is characterized by intraocular inflammation that often leads to blindness in horses. Appaloosas are more likely than any other breed to develop insidious ERU, distinguished by low-grade chronic intraocular inflammation, suggesting a genetic predisposition. Appaloosas are known for their white coat spotting patterns caused by the leopard complex spotting allele (LP) and the modifier PATN1. A marker linked to LP on ECA1 and markers near MHC on ECA20 were previously associated with increased ERU risk. This study aims to further investigate these loci and identify additional genetic risk factors. A GWAS was performed using the Illumina Equine SNP70 BeadChip in 91 horses. Additive mixed model approaches were used to correct for relatedness. Although they do not reach a strict Bonferroni genome-wide significance threshold, two SNPs on ECA1 and one SNP each on ECA12 and ECA29 were among the highest ranking SNPs and thus warranted further analysis (P = 1.20 × 10-5 , P = 5.91 × 10-6 , P = 4.91 × 10-5 , P = 6.46 × 10-5 ). In a second cohort (n = 98), only an association with the LP allele on ECA1 was replicated (P = 5.33 × 10-5 ). Modeling disease risk with LP, age and additional depigmentation factors (PATN1 genotype and extent of roaning) supports an additive role for LP and suggests an additive role for PATN1. Genotyping for LP and PATN1 may help predict ERU risk (AUC = 0.83). The functional role of LP and PATN1 in ERU development requires further investigation. Testing samples across breeds with leopard complex spotting patterns and a denser set of markers is warranted to further refine the genetic components of ERU.


Assuntos
Doenças dos Cavalos/genética , Cavalos/genética , Canais de Cátion TRPM/genética , Uveíte/veterinária , Alelos , Animais , Cruzamento , Estudos de Casos e Controles , Estudos de Associação Genética/veterinária , Predisposição Genética para Doença , Genótipo , Cor de Cabelo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Uveíte/genética
8.
Equine Vet J ; 52(3): 411-414, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31502696

RESUMO

BACKGROUND: Catastrophic fractures are among the most common cause of fatalities in racehorses. Several factors, including genetics, likely contribute to increased risk for fatal injuries. A variant in the procollagen-lysine, 2-oxoglutarate 5-dioxygenase1 gene (PLOD1 c.2032G>A) was shown to cause Warmblood fragile foal syndrome type 1 (WFFS), a fatal recessive defect of the connective tissue. Screening of multiple horse breeds identified the presence of the WFFS allele in the Thoroughbred. PLOD1 is involved in cross-linking of collagen fibrils and thus could potentially increase the risk of catastrophic breakdown. OBJECTIVES: Estimate the frequency of the WFFS allele (PLOD1 c.2032G>A) and determine if it is a risk factor for catastrophic breakdown in the Thoroughbred. STUDY DESIGN: Case-control genetic study. METHODS: Genomic DNA from hair and/or tissue samples was genotyped for the WFFS allele. Fisher's Exact tests were performed to compare allele and carrier frequencies between the case cohort (catastrophic breakdown, n = 22) and several cohorts with no record of injury (n = 138 raced/trained at same track and season and n = 185 older than 7 years and raced during same season), nonracers (n = 92), and a random sample without consideration for racing history (n = 279). RESULTS: The frequency of the PLOD1 c.2032G>A variant in the Thoroughbred breed is low (1.2%). Seventeen of 716 Thoroughbreds tested were carriers (2.4%) and no WFFS homozygotes were detected. Only one catastrophic breakdown case carried the WFFS allele. No statistically significant difference in allele or carrier frequency was identified between case and control cohorts (P>0.05 in all comparisons performed). MAIN LIMITATIONS: This study evaluated cases from one single track. CONCLUSIONS: This study demonstrated that the PLOD1 c.2032G>A associated with WFFS is present at very low frequency in Thoroughbreds and is not a genetic risk factor for catastrophic breakdown.


Assuntos
Doenças dos Cavalos/genética , Alelos , Animais , Cruzamento , Frequência do Gene , Cavalos , Mutação , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase
9.
Anim Genet ; 50(6): 569-597, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31568563

RESUMO

The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite-free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high-quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species.


Assuntos
Cavalos/genética , Animais , Centrômero , Domesticação , Genoma , Cavalos/fisiologia , Masculino , Linhagem , Condicionamento Físico Animal , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional , Cromossomo Y
10.
Anim Genet ; 49(6): 564-570, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30311254

RESUMO

The Functional Annotation of Animal Genomes (FAANG) project aims to identify genomic regulatory elements in both sexes across multiple stages of development in domesticated animals. This study represents the first stage of the FAANG project for the horse, Equus caballus. A biobank of 80 tissue samples, two cell lines and six body fluids was created from two adult Thoroughbred mares. Ante-mortem assessments included full physical examinations, lameness, ophthalmologic and neurologic evaluations. Complete blood counts and serum biochemistries were also performed. At necropsy, in addition to tissue samples, aliquots of serum, ethylenediaminetetraacetic acid (EDTA) plasma, heparinized plasma, cerebrospinal fluid, synovial fluid, urine and microbiome samples from all regions of the gastrointestinal and urogenital tracts were collected. Epidermal keratinocytes and dermal fibroblasts were cultured from skin samples. All tissues were grossly and histologically evaluated by a board-certified veterinary pathologist. The results of the clinical and pathological evaluations identified subclinical eosinophilic and lymphocytic infiltration throughout the length of the gastrointestinal tract as well as a mild clinical lameness in both animals. Each sample was cryo-preserved in multiple ways, and nuclei were extracted from selected tissues. These samples represent the first published systemically healthy equine-specific biobank with extensive clinical phenotyping ante- and post-mortem. The tissues in the biobank are intended for community-wide use in the functional annotation of the equine genome. The use of the biobank will improve the quality of the reference annotation and allow all equine researchers to elucidate unknown genomic and epigenomic causes of disease.


Assuntos
Bancos de Espécimes Biológicos , Genômica , Cavalos/genética , Animais , Feminino , Fenótipo
11.
Anim Genet ; 49(5): 457-460, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29999543

RESUMO

Squamous cell carcinoma (SCC) is the most common cancer affecting the equine eye, with a higher incidence documented in Haflinger horses. Recently, a missense variant in the gene damage specific DNA binding protein 2 (DDB2, p.Thr338Met) on ECA12 was identified as a risk factor for the development of limbal SCC in Haflinger horses. SCC also occurs on the nictitating membrane; therefore, investigating the role of this missense variant in nictitating membrane SCC is warranted. In this study, a common ancestor was identified among Haflinger horses affected with limbal SCC or with nictitating membrane SCC, thus supporting a recessive risk factor for the development of cancer at both ocular locations. Analysis of genotype data from Haflinger horses with and without nictitating membrane SCC revealed that the same region on ECA12 associated with limbal SCC was also associated with nictitating membrane SCC (P < 2.04 × 10-5 ). Fine mapping of this locus using 25 cases and 49 controls supported the hypothesis that DDB2:c.1013C>T, p.Thr338Met, is a risk factor for nictitating membrane SCC, as 88% of our cases were homozygous for this variant and no other polymorphism was more strongly associated (P = 4.13 × 10-14 ). These data indicate that the genetic risk is the same for the development of both limbal and nictitating membrane SCC in Haflinger horses and validates utilization of genetic testing of the DDB2 variant for both clinical management and the guidance of mating decisions.


Assuntos
Carcinoma de Células Escamosas/veterinária , Neoplasias Oculares/veterinária , Doenças dos Cavalos/genética , Animais , Carcinoma de Células Escamosas/genética , Cromossomos de Mamíferos , Proteínas de Ligação a DNA/genética , Neoplasias Oculares/genética , Cavalos , Limbo da Córnea/patologia , Proteínas Associadas aos Microtúbulos/genética , Membrana Nictitante/patologia , Polimorfismo de Nucleotídeo Único
12.
BMC Genomics ; 18(1): 511, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676104

RESUMO

BACKGROUND: Efforts to resolve the transcribed sequences in the equine genome have focused on protein-coding RNA. The transcription of the intergenic regions, although detected via total RNA sequencing (RNA-seq), has yet to be characterized in the horse. The most recent equine transcriptome based on RNA-seq from several tissues was a prime opportunity to obtain a concurrent long non-coding RNA (lncRNA) database. RESULTS: This lncRNA database has a breadth of eight tissues and a depth of over 20 million reads for select tissues, providing the deepest and most expansive equine lncRNA database. Utilizing the intergenic reads and three categories of novel genes from a previously published equine transcriptome pipeline, we better describe these groups by annotating the lncRNA candidates. These lncRNA candidates were filtered using an approach adapted from human lncRNA annotation, which removes transcripts based on size, expression, protein-coding capability and distance to the start or stop of annotated protein-coding transcripts. CONCLUSION: Our equine lncRNA database has 20,800 transcripts that demonstrate characteristics unique to lncRNA including low expression, low exon diversity and low levels of sequence conservation. These candidate lncRNA will serve as a baseline lncRNA annotation and begin to describe the RNA-seq reads assigned to the intergenic space in the horse.


Assuntos
Cavalos/metabolismo , RNA Longo não Codificante/genética , Transcriptoma , Animais , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Cavalos/genética , Especificidade de Órgãos , Análise de Sequência de RNA
13.
BMC Genomics ; 18(1): 103, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28107812

RESUMO

BACKGROUND: Transcriptome interpretation relies on a good-quality reference transcriptome for accurate quantification of gene expression as well as functional analysis of genetic variants. The current annotation of the horse genome lacks the specificity and sensitivity necessary to assess gene expression especially at the isoform level, and suffers from insufficient annotation of untranslated regions (UTR) usage. We built an annotation pipeline for horse and used it to integrate 1.9 billion reads from multiple RNA-seq data sets into a new refined transcriptome. RESULTS: This equine transcriptome integrates eight different tissues from 59 individuals and improves gene structure and isoform resolution, while providing considerable tissue-specific information. We utilized four levels of transcript filtration in our pipeline, aimed at producing several transcriptome versions that are suitable for different downstream analyses. Our most refined transcriptome includes 36,876 genes and 76,125 isoforms, with 6474 candidate transcriptional loci novel to the equine transcriptome. CONCLUSIONS: We have employed a variety of descriptive statistics and figures that demonstrate the quality and content of the transcriptome. The equine transcriptomes that are provided by this pipeline show the best tissue-specific resolution of any equine transcriptome to date and are flexible for several downstream analyses. We encourage the integration of further equine transcriptomes with our annotation pipeline to continue and improve the equine transcriptome.


Assuntos
Perfilação da Expressão Gênica , Genoma , Genômica , Transcriptoma , Animais , Mapeamento Cromossômico , Análise por Conglomerados , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Isoformas de RNA
14.
Anim Genet ; 47(1): 91-101, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26568529

RESUMO

Leopard complex spotting (LP), the result of an incompletely dominant mutation in TRPM1, produces a collection of unique depigmentation patterns in the horse. Although the LP mutation allows for expression of the various patterns, other loci are responsible for modification of the extent of white. Pedigree analysis of families segregating for high levels of patterning indicated a single dominant gene, named Pattern-1 (PATN1), as a major modifier of LP. Linkage analysis in two half-sibling families segregating for PATN1 identified a 15-Mb region on ECA3p that warranted further investigation. Whole transcriptome sequencing of skin samples from horses with and without the PATN1 allele was performed to identify genic SNPs for fine mapping. Two Sequenom assays were utilized to genotype 192 individuals from five LP-carrying breeds. The initial panel highlighted a 1.6-Mb region without a clear candidate gene. In the second round of fine mapping, SNP ECA3:23 658 447T>G in the 3'-UTR of RING finger and WD repeat domain 3 (RFWD3) reached a significance level of P = 1.063 × 10(-39). Sequencing of RFWD3 did not identify any coding polymorphisms specific to PATN1 horses. Genotyping of the RFWD3 3'-UTR SNP in 54 additional LP animals and 327 horses from nine breeds not segregating for LP further supported the association (P = 4.17 × 10(-115)). This variant is a strong candidate for PATN1 and may be particularly useful for LP breeders to select for high levels of white patterning.


Assuntos
Cor de Cabelo/genética , Cavalos/genética , Polimorfismo de Nucleotídeo Único , Ubiquitina-Proteína Ligases/genética , Regiões 3' não Traduzidas , Animais , Cruzamento , Mapeamento Cromossômico , Feminino , Genes Dominantes , Ligação Genética , Genótipo , Masculino , Linhagem , Fenótipo , Análise de Sequência de DNA , Transcriptoma
15.
Anim Genet ; 45(3): 392-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24467435

RESUMO

Appaloosa horses are predisposed to equine recurrent uveitis (ERU), an immune-mediated disease characterized by recurring inflammation of the uveal tract in the eye, which is the leading cause of blindness in horses. Nine genetic markers from the ECA1 region responsible for the spotted coat color of Appaloosa horses, and 13 microsatellites spanning the equine major histocompatibility complex (ELA) on ECA20, were evaluated for association with ERU in a group of 53 Appaloosa ERU cases and 43 healthy Appaloosa controls. Three markers were significantly associated (corrected P-value <0.05): a SNP within intron 11 of the TRPM1 gene on ECA1, an ELA class I microsatellite located near the boundary of the ELA class III and class II regions and an ELA class II microsatellite located in intron 1 of the DRA gene. Association between these three genetic markers and the ERU phenotype was confirmed in a second population of 24 insidious ERU Appaloosa cases and 16 Appaloosa controls. The relative odds of being an ERU case for each allele of these three markers were estimated by fitting a logistic mixed model with each of the associated markers independently and with all three markers simultaneously. The risk model using these markers classified ~80% of ERU cases and 75% of controls in the second population as moderate or high risk, and low risk respectively. Future studies to refine the associations at ECA1 and ELA loci and identify functional variants could uncover alleles conferring susceptibility to ERU in Appaloosa horses.


Assuntos
Doenças dos Cavalos/genética , Uveíte/veterinária , Alelos , Animais , Marcadores Genéticos , Cavalos , Repetições de Microssatélites , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Uveíte/genética
16.
Anim Genet ; 41 Suppl 2: 100-10, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21070283

RESUMO

Horses are valued for the beauty and variety of colouration and coat patterning. To date, eleven different genes have been characterized that contribute to the variation observed in the horse. Unfortunately, mutations involving pigmentation often lead to deleterious effects in other systems, some of which have been described in the horse. This review focuses on six such pleiotropic effects or associations with pigmentation genes. These include neurological defects (lethal white foal syndrome and lavender foal syndrome), hearing defects, eye disorders (congenital stationary night blindness and multiple congenital ocular anomalies), as well as horse-specific melanoma. The pigmentation phenotype, disorder phenotype, mode of inheritance, genetic or genomic methods utilized to identify the genes involved and, if known, the causative mutations, molecular interactions and other susceptibility loci are discussed. As our understanding of pigmentation in the horse increases, through the use of novel genomic tools, we are likely to unravel yet unknown pleiotropic effects and determine additional interactions between previously discovered loci.


Assuntos
Pleiotropia Genética , Cavalos/anatomia & histologia , Cavalos/genética , Pigmentação , Animais , Surdez/genética , Surdez/veterinária , Genes Letais , Doenças dos Cavalos/genética , Melanoma/genética , Melanoma/veterinária , Proteínas Qa-SNARE/genética , Receptor de Endotelina B/genética , Canais de Cátion TRPM/genética , Transtornos da Visão/genética
17.
Science ; 326(5954): 865-7, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19892987

RESUMO

We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.


Assuntos
Cromossomos de Mamíferos/genética , Genoma , Cavalos/genética , Análise de Sequência de DNA , Animais , Animais Domésticos/genética , Centrômero/genética , Mapeamento Cromossômico , Biologia Computacional , Variações do Número de Cópias de DNA , Cães , Evolução Molecular , Feminino , Genes , Haplótipos , Humanos , Dados de Sequência Molecular , Filogenia , Sequências Repetitivas de Ácido Nucleico , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...